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Similarity computation results

Sleeping BeautySpeaking Horsehead

Golden Tuning Fork

Hansel & Gretel

Frog King

Chinese NightingaleRed Shoes

Red Riding Hood

Snow White

Table, Ass & Stick

Gardener & Fakir

Kind & Unkind Girls

Waterlilies

Wonderful Helpers

Wolf & Seven Kids

Golden Goose

12.06

13.48

10.98

13.41

16.46
11.2016.00

12.80

14.78

11.30

11.4114.09
10.74

14.09

14.55

11.19

13.42

12.08

17.01

14.29

12.30

11.84

10.53

11.73

14.53

11.73

10.29

22.06

10.29

10.42

12.50

14.58

10.42

11.27

11.64

17.61

11.27

11.77

14.71

Central nodes and clusters visible

Royal protagonists, moral values vs. civilian protagonists,
dangerous circumstances
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Evaluation

Same method, no WordNet, lemma’s only
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Evaluation

Similarity measure vs. human ratings

scored term McNo McRel McSim RgNo RgRel RgSim

source 0.64 0.60 0.64 0.54 0.48 0.55
target 0.44 0.39 0.49 0.53 0.53 0.54
lowest 0.59 0.54 0.63 0.53 0.52 0.55
average 0.62 0.56 0.65 0.58 0.55 0.59
highest 0.58 0.53 0.61 0.58 0.54 0.59

Miller & Charles, Rubenstein & Goodenough word pairs

No instruction, report similarity, report relatedness

Correlations lower than Postma & Vossen (2014), around 0.8

Different type of similarity measure



Evaluation

Similarity measure vs. human ratings

scored term McNo McRel McSim RgNo RgRel RgSim

source 0.64 0.60 0.64 0.54 0.48 0.55
target 0.44 0.39 0.49 0.53 0.53 0.54
lowest 0.59 0.54 0.63 0.53 0.52 0.55
average 0.62 0.56 0.65 0.58 0.55 0.59
highest 0.58 0.53 0.61 0.58 0.54 0.59

Miller & Charles, Rubenstein & Goodenough word pairs

No instruction, report similarity, report relatedness

Correlations lower than Postma & Vossen (2014), around 0.8

Different type of similarity measure



Evaluation

Similarity measure vs. human ratings

scored term McNo McRel McSim RgNo RgRel RgSim

source 0.64 0.60 0.64 0.54 0.48 0.55
target 0.44 0.39 0.49 0.53 0.53 0.54
lowest 0.59 0.54 0.63 0.53 0.52 0.55
average 0.62 0.56 0.65 0.58 0.55 0.59
highest 0.58 0.53 0.61 0.58 0.54 0.59

Miller & Charles, Rubenstein & Goodenough word pairs

No instruction, report similarity, report relatedness

Correlations lower than Postma & Vossen (2014), around 0.8

Different type of similarity measure



Evaluation

Comparison with Thompson Motif Index

Limited number of (semi-)abstract story elements for many
(but not all) folktales

ATU Title Motif description Motif code match level

123 The Wolf & the Seven Kids Disguise by changing voice K1832

333 Little Red Riding Hood Wolf puts flour on his paw to disguise himself K1839.1 4
533 The Speaking Horsehead Disguise as goose-girl (turkey-girl) K1816.5 3
533 The Speaking Horsehead Imposter forces oath of secrecy K1933 2
709 Snow White Compassionate executioner: substituted heart K0512.2 1



Evaluation

Directed motif overlap, 2 most similar documents per node

Asterisk (*) indicates relation also found by WordNet method

TMI contains different type of relation
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Discussion

Questions?


